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The Mixed volume and the Mixed
Discriminant, 1998, A. Barvinok’s paper in

“Lectures on Mathematical Programming:

ISMP-97”

K = (Ky, ..., K,) is a n-tuple of convex compact sub-

sets (i.e. convex bodies) in the Euclidean space R™;
Vk(AL, oo Ap) = Vol(MEL+ -+ -+ N K), A > 0.

Herman Minkowski proved that Vi is a homogeneous
polynomial with non-negative coefficients. The mixed

volume:

o"
OA1...0N\,
i.e. the mixed volume V (K1, ..., K,) is the coefficient

V(Kl, cory Kn> —=.

Vic(0, ..., 0).

of the monomial 1} <;<,, A; in the Minkowski polynomial

Vk.



Let A = (A, ..., A,) be an n-tuple of n X n complex
matrices;
the corresponding determinantal polynomial is defined

as

DetA<>\1, cees )\n> — th( > )\ZAZ>

1<i<n
The mixed discriminant is defined as
OO\,

i.e. the mixed discriminant D(Ay, ..., A,) is the coef-

D(Ay, ..., A) Deta(0, ..., 0).

ficient of the monomial 1M <;<, A; in the determinantal

polynomial Detx.



Examples.

Kz’ — {(tl, ,tn> : 0 < tj < A(Z,]),l < ] < n},
the mixed volume of coordinate boxes K;:

V(Ky...Ky) = Per(A)= £ 11 A(i,0(i)).

oeSy, 1<i<n

If each coordinate box K is a rectangle(parallelogram)
then computing the mixed volume V' (By, ..., By) is

CCeaSy77 .

2. K; ={ae; +bY;: 0 <a,b<1}is a parallelogram,
A =:[Y1,...,Y,]. Then the mixed volume

V(Ky,....K,)=MV(A)= ¥ |det(Asg)|.
Sc{l,...,n}

If Q; = eieiT + YZ-YZT then the mixed discriminant

D(Q1, ..., Qn) = MD(A) =1 ¥ (det(Ass))".
Sc{l,...,n}

3. Both M D(A) and MV (A) are #P — Complete

even if the matrix A is unimodular.
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From the mixed volume of Ellipsoids to the

Mixed Discriminant

The convex bodies K; are well-presented:
Given a weak membership oracle for K; and a rational

n X n matrix B;, a rational vector Y; € R" such that

Y, + BZ(Balln(l)) CK,CY,+nvn-+ 1BZ(BCLlln<1>)

(1)
Let €p be the ellipsoid B(Ball,(1)) in R". Then

V(ggl, ...,an> S V<K1, ,Kn> S (n\/n+ 1)”‘/(531, ...,an>.

[Barvinok, 1997]: Define v,, =: Vol,,(Ball,(1)). Then

the following inequalities hold:

3T 0, D2( A (AT, ., An(A)T) < V(En,...E4



Suppose that we have an effectively computable esti-

mate F' such that

D(Ai(A1)", .., An(A4n))) < 1.
- <

v(n) <
Then

/ _n+l V(K:l,...,Kn) 1.5
3 2 < < 0T
V(n) ~  VFvn) — "

Which gives the approximation factor

n1.5n3”gl<m)—1 > 00,

Barvinok [1997] gave the poly-time randomized algo-

rithm with y(n) = ¢", ¢ < 1.



A deterministic algorithm for the Mixed
Discriminant, Geometric Programming,

Quantum Entanglement: 1998-2005

Let p € Hom.(n,n) be a homogeneous polynomial
with nonnegative coefficients. Define the following quan-

tity, called Capacity:

Cap(p) =: inf Pl ’xn).

2i>0 T1<j<p Ti

Clearly mf%p(@, 0,...,0) < Cap(p).

Now

)

_ ; Y1 Yn
log(Cap(p)) = i _ log(p(e™,....e™))

and the functional log(p(e?t, ..., €¥")) is convex. There-
fore log(C'ap(p)) might be, with some extra care and
luck, effectively additively approximated using convex
programming tools and an oracle, deterministic or ran-

dom, evaluating the polynomial p.



But we need a lower bound:
an
(%1 s 8%

In the case of the mixed discriminant the corresonding

p(0,0,...,0) = y(n)Cap(p), v(n) > 0.

polynomial
p(xy, .y xy) = det(T1<i<pn :Q;), where the matrices

Qi = 0 are PSD. Fasy to evaluate deterministically!



Boils down to the following result:

Theorem 0.t Let n-tuple A = (Aq, ..., A,) of her-

mitian n X n PSD matrices be doubly-stochastic:
tr(A)=1,1<i<n; > A =1
1<i<n
Then the mized discriminant

n |
S Detaf0,. 0> (3

- 0xq,...,0x, —nn

The equality in (3) is attained iff A; = +1,1 <14 <

D(A)

n.

Solution of R. Bapat’s conjecture (1989), stated for
real symmetric PSD matrices, generalization of Van der

Waerden conjecture for the permanent; proved by L.G.

(1999), final publication (2006))

The reason for the result: optimality condition for

min,, 4+ +y,—0log(Detq(e?, ..., e¥")) states that the tu-

ple (P(e"'Q1)P, ..., P(e"Q,)P), P = (S1<i<n €¥Q;)~

9

DO —



is doubly-stochastic. This observation and Theorem(0.1)

imply that
|
D@ Q) _
n® — Cap(Detq) —
Can put y(n) = 2 ~ e ™.

My proof is a very non-trivial adaptation of Ego-
rychev’s proof of Van Der Waerden conjecture for the
permanent, which I learned from Knut’s 1981 Monthly
exposition.

Did not actually need doubly-stochasticity, it served as
a tool; non-convex optimization with semi-definite con-
straints.

The proof is very matrix-oriented, crucially uses the

group action:

D(X A1 X", ..., XA, X*) = det(XX*)D(Ay, ..., Ay).
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Got a deterministic poly-time(not strongly polyno-
mial) algorithm to approximate the mixed discrim-
inant with the factor " and the mixed volume with

O(n)

the factor n“\". Can we get a factor ¢ deterministi-

cally for the mixed volume? NO!

In the oracle setting, even for the single volume the

n

factor is greater than (Q (”))2 (Barany-Furedi

logn
bound).

Can we get factor ¢" using a randomized poly-time

algorithm?

Can we get a better factor for the mixed discrim-

inant if the ranks Rank(Q);) are small?

[s there a simpler proof?
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A revelation, 2003-2004-2005-...

Definition 0.2 A homogeneous polynomial p € Homea(m,n)
is H-Stable it

Example 0.3 Consider a bivariate homogeneous poly-
nomial p(z1, z2) = (22)" P(3}), where P is some univari-
ate polynomial. Then p is H-Stable iff the roots of P
are non-positive real numbers. This assertion is just a

rephrasing of the next set equality:

C— {zl . Re(z1), Re(29) > 0} ={x € R:x < 0}.

This simple bivariate observation gives the connection

between H-Stability and Hyperbolicity:
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Fact 0.4 A homogeneous polynomial p € Homg(m, n)
is H-Stable iff it is e-hyperbolic, e = (1, ..., 1), i.e. the
roots of p(xy —t,...,x,,, —t) = 0 are real for all real
vectors X € R™, and its hyperbolic cone contains the
positive orthant R, i.e. the roots of p(X — te) =0
are positive real numbers for all positive real vectors
X e R,

Moreover o € H om4(m,n) for all X € R, and

(21, ..., zm)| = |p(Re(z1), ..., Re(zn))| : Re(z) >
0,
1 <1< m.
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Note that a determinantal polynomial Detq is H-
Stable for non-trivial PSD tuples:

Qi = 0,Z1<i<n Qi > 0.

A homogeneous polynomial ¢ € Hom(n,n) is called

doubly-stochastic if

0
L,1,...,1)=1,1<i<n.
axZQ(77 7) Y v n

Alternative definition:

1<i<n
A determinantal polynomial Detq is H-Stable and
doubly-stochastic for doubly-stochastic tuples (@1, ..., @n)
is doubly-stochastic 1717... A possible generalization of
Van Der Waerden and Bapat’s conjectures, but how to

prove it?

All previous proofs heavily relied on the matrix struc-

ture.
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The Capacity, which appeared as an algorithmic tool,

happened to be the “saviour”!
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Theorem 0.5: Let p € Hom(n,n) be H-Stable

polynomial and

1 — 1
1

Gli) = ( )H P> 1) = 1.

Then the following inequality holds

an
——=-—p0,...,0

Cap(p) ~ 2<i<n

Actually, G(i) = wi‘i’fg}i@l), where vdw(i) = % and

this function G is strictly decreasing on [0, 00).

Thus Iy<;j<, G(min(¢, degy(i))) > G(2)---G(n) = n!

nn

Corollary 0.6 Assume WLOG that Cap(p) > 0.

Then o
(9x1...(9a:np(o’ T ’O) n! (6)
Cap(p) ~ — n"
Fquality in (6) is attained iff p(xq, ..., x,) = (@121 +

ot apxy)a; > 0,1 <i < n.
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Proof: Step 1.

Lemma 0.7: Consider an uniwvariate polynomial
R(t) = so<i<pait';a; > 0,a;, > 0. If the roots of
R are real( nec. non-positive) then

R(0) > G(k) ngf),G(k) _ () W

>

Proof: The case R(0) = 0 is trivial: G(k) > 1 and
R'(0) = infyo ©Y.

Otherwise, R(t) = R(0)1<j<ix(1 + b;it) where b; >
0,1<i<k

Assume WLOG that R(0) = 1. We get, using AM/GM

inequality, that

R(t) < Pow(t) =: (1 + . )

Easy to compute that inf;~g me(t) = R'(0)(G(k))~L

Which leads to

. R(t
> ant>0£>~

RO)(G(H) ™ = o7
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Step 2.

Fix positive numbers 1, ..., x,—1 and consider the
univariate polynomial R(t) = p(zy,...,x,_1,t). Note
that the bivariate homogeneous polynomial
Q(s,t) = p(sxy, ..., sz, 1,t) = s"R(t/s) is H-Stable.
Therefore, the roots of R are non-positive real numbers.

The degree deg(R) = deg,(n) =: k and

R(t) = p(x1,....xp1,t) > Cap(p)( T x;)t,t > 0.

1<i<n—1 o

Lemma(0.7) gives the inequality

R(0) > (Cap(p) 1 x;)G(degy(n)).

1<i<n—1
Note that R'(0) = (fgnp(xl, ey Tpe1,0) = qu1 (21, -, T ).

We finally get the main inequality:

Cap(gn-1) > G(deg,(n))Cap(p)
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Step 3. Define the following polynomials
¢ € Hom (i,1),1 <i<n—1.
an—i

afo_Fl . e e axn

qi(x1,. ..,z p(ry, ..., x;,0,...,0).

Note that g1(1) = 5-%5-p(0)1, Cap(qr) = 5% 5:-p(0)
and deg,, () < min(¢, deg,(7)).

Using Gauss-Lukas Theorem, we get that g; is either
zero or H-Stable. Step 2 gives that

Cap(gi—1) > G(deg, (i))Cap(q;).

Since deg,, (1) < min(Z, degy(i)) abd G is decreasing,
we get that

Caplgir) > Glmin(i, deg, () Capla).  (8)
Finally we just multiply inequalities (8):

an
_ N IR
9 g P0) = Caplqr) = Cap(p) 11 G(min(i, deg,(i))
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Specializing to the permanent and the mixed discrim-

inant: the polynomial for permanent Per(A) is

Proda(xy,...z,) = 11 X A(,7)z;.

1<i<n 1<j<n
[.e. the mixed derivative of Prod4 is equal to Per(A).
If A is non-negative and Prods # 0 then Prody, is
H-Stable.
degprod,(J) = |col(j)| = number of non-zero entries in

7th column.

If A is doubly-stochastic then Cap(Prods) = 1.

Theorem 0.8: If A is a doubly-stochastic n X n

matriz then

n!
< . A S N
Per(A)2 1L Glminleol(G)], ) 2 11 GG) =",
If lcol(j)| <k <n fork+1<j>mn then
ke — 1\ F=D0=k) g E— 1\
Per(d) > (<) w0n) ) o
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A. Schrijever (1998): A = {d(;j) 1 <4,5 <n},
All rows and columns of the integer matrix D sum
to k < n (i.e. k-regular bipartite graph with multiple
edges). Then

_1 (k—l)n
Per(A) > (kk) .

The inequality (9) gives a stronger version of the very

(10)

discrete Schrijvers’s inequality (10). Moreover, our in-
equality works in much more general real valued case.
Amazingly, the exponent (k 1)k Vg optimal. This op-
timality follows from a forgotten H. Wilt’s 1966 paper.
Was rediscovered by Schrijver and Valiant in 1981.

In the case of the mixed discriminant of doubly-stochastic

tuples:

D(Ay,...,A,) > 11 G(min(Rank(A4,),7)).

2<j<n

This leads to the deterministic poly-time algorithms to

.....
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 Sc{1,..n} | det(Ag s)|* with the factor 3;
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Back to the mixed volume: the Minkowski polyno-

mial
VOln<)\1K1 + - AnKn» — VK<>\1, ceny >\n>

is not necessary H-Stable if n > 3. But essentially

the same proof works!

Theorem 0.9 Let K = (Ky,..., K,) be a tuple of

conbex bodies in R"™. Then the mixed volume
|
Cap(Vic) = V(K1 K) = Cap(Vie). (1)

The inequalities (11) lead to a randomized poly-time
algorithm to approximate the mixed volume with the

factor e”.

Why it works: the polynomials
an—i

a$2+1 . o e axn

qi(x1,...,7;) p(xy, ..., x;,0,...,0)

are not H-Stable, but (qi)% are log-concave on R, .

A lot of hyperbolic (i.e. H-Stable ) stuff can gener-
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alized to such Strongly Log-Concave polynomials

and even entire functions.
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A few open problems

1. Let p € Hom,(n,n) be H-Stable and doubly-
stochastic, Z = (z1, ..., z,) € C".
Is the vector I' = (71, ...,y,) consisting of all the
roots of the equation p(z; — t,..., 2z, — t) =0
majorized by the vector Z, i.e. I' = AZ for some
DS matrix A 7

2. Let us consider two H-Stable polynomials p, g €
Hom.(m,n):

r
P(Cﬁla ceey xm) — Zr1+...+rm=n arl,...,rm ngigm xizp

r
Q(Qﬁ, ceey xm) — Z:7“1—|—...—|—7“m:n brl,...,rm M<i<m xily

and a nonnegative vector (ly, ..., [,,) with
S1<i<m li = n.
Let us assume that

: pixry,...,T .
1nfa:7;>0,1§z'§m (WZLZ) = A > Oa
1<i<m &

- Tl Tm) .
lnfxl.>0’1§2'§m w =: B > 0.
M<i<mZ;

25



Then the following inequality holds:

d
<p,g >=: 2. Qpy ... rmbrl T > ABU w<nm)
Mt Frm=n " T wa(n>m
(12)
Define
<Dp,g >r=: > B arl,...,rmbrl,...,rm<rl)!---<Tm)!

Is it true that (even for [; = -1 <4 < m and

multilinear polynomials)

<p,g>p> ABTZ!”'
The reason: the Van Der Waerden conjecture for
the permanent sharply quantifies Hall’s theorem on
the rank of the intersection of two transveral ma-
troids, the Bapat’s conjecture sharply quantifies Rado’s
theorem on the rank of the intersection of one transver-
sal and one geometric matroid.

The inequality (12) does similar thing for the in-

tersection of two geometric matroids (even for the
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intersection of sets of vertices of special integer poly-

matroids). But the inequality (12), although non-

)

obvious and quite cool, does not seem sharp.
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A few “optimizational” comments.

1. Let p € Hom.(n,n) be H-Stable

;
Py, .y Tp) = > ary .y
T1+...FTrp=n <i<m
Existence and uniqueness ininf, 4, —olog(p(e?!, ..., e¥")):

42,011y Q021,15 Q1. 120501102 > 0. (13)
[.e. n(n —1) conditions, can be checked by a deter-
ministic Strongly poly-time Black-Box algorithm:;
provides good bounds on a ball containing the so-

lution.

2. If a minimum exists then either (13) hold or there

exists a partition {1,...,n} = Uj<,;<;X; such that
L1y ey Tp) = (2,1 € X;).
p(y n) 1§1}§ka( i ])

This factorization can be also effectively computed.

3. Weak log-concavity: p% is concave on

half-lines {X +tY :t >0} : X, Y € R .
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Implies the inequality:
p(SH(xq,....x,)) < plxy, ..., x,), where z; > 0,1 <
1 < n and

flxq, ...,y
SH<:C17 75571) — (yla 7yn> - Yi = 5 ( ) .
e (21, ..., Tp)

Corollary 0.1Q Let p € Hom.(n,n) be weakly
log-concave. Suppose that Cap(f) > 0,
log(Cap(f)) < log(f(x1,...,x,)) <log(Cap(f)) +
€, € < 110

and M<j<p x; = 1.

Then

xza ST, mn)

1<i<n f(:l?l, g Cl?n>

2 <10e.  (14)
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